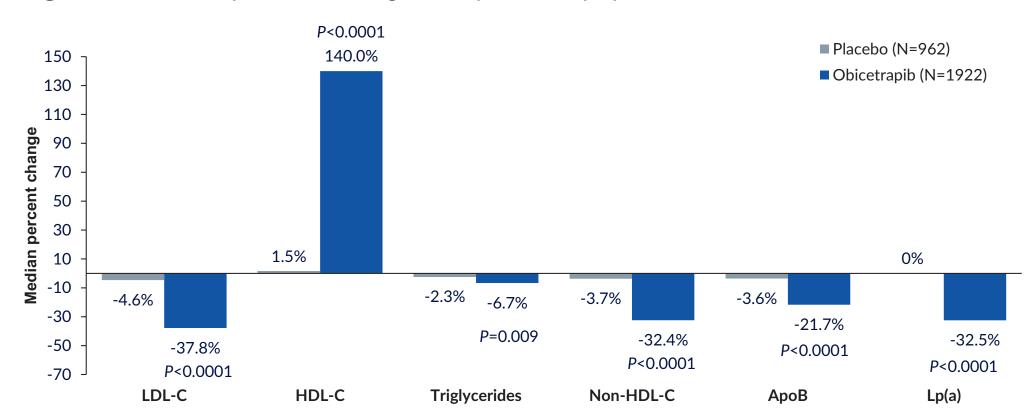
Impact of Obicetrapib on Major Adverse Cardiovascular Events: A Pooled Analysis of Phase 3 Clinical Trials

Stephen J. Nicholls, Adam J. Nelson, Kausik K. Ray, Marc Ditmarsch, Douglas Kling, Andrew Hsieh, Michael Szarek, John J.P. Kastelein, Michael H. Davidson

Background

- Cholesteryl ester transfer protein (CETP) plays a pivotal role in lipid metabolism¹⁻⁵
- Genomic studies and post hoc analyses of clinical trials demonstrated that the cardiovascular (CV) protection associated with low CETP activity results from lower levels of low-density lipoprotein cholesterol (LDL-C) and not increased levels of high-density lipoprotein cholesterol (HDL-C)⁶⁻¹⁰
- Early CETP inhibitor programs focused on HDL-C raising and failed to consistently demonstrate a reduction in CV events^{7,8,11}
- Obicetrapib is a highly selective CETP inhibitor which is well-tolerated, lowers levels of LDL-C, apolipoprotein B (ApoB) and lipoprotein (a) (Lp[a]), and raises HDL-C when administered on top of maximally tolerated lipid-lowering therapy (LLT) in studies of high-risk patients with either heterozygous familial hypercholesterolemia (HeFH) or atherosclerotic cardiovascular disease (ASCVD)¹²⁻¹⁵
- The effects of obicetrapib on major adverse cardiovascular events (MACE) have not been investigated

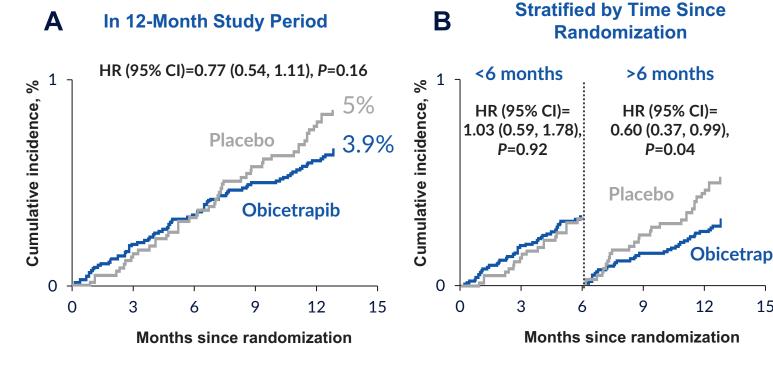

Objective

• To investigate the rate of CV events in patients treated with obicetrapib compared with placebo in a pooled analysis of 2 large phase 3 lipid-lowering trials over 12 months of treatment in high CV risk cohorts

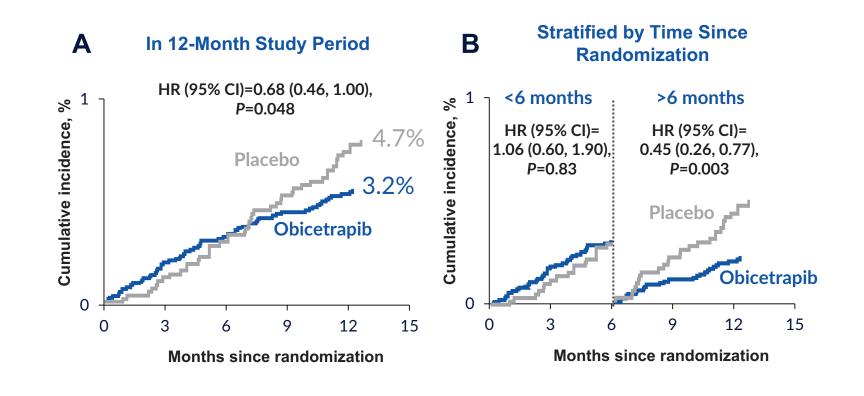
Methods

- BROOKLYN (NCT05425745) and BROADWAY (NCT05142722) were phase 3, randomized, double-blind, placebo-controlled trials evaluating the effect of obicetrapib 10 mg as an adjunct to maximally tolerated LLT
 - BROOKLYN included 354 adult participants with HeFH with fasting LDL-C ≥70 mg/dL and triglycerides <400 mg/dL
 - BROADWAY included 2530 adult participants with HeFH and/or ASCVD and LDL-C ≥100 mg/dL or LDL-C ≥55 mg/dL with risk factors
- A pooled analysis of both clinical trials was performed as they involved administration of obicetrapib or placebo for 12 months
 - Potential CV events were adjudicated by a central committee who were blinded to the treatment status of the patients
 - Treatment groups were compared via proportional hazards modes, and the relationship between treatment effects and time since randomization was determined through post hoc models
 - The association between achieved levels of lipids and lipoproteins with the rate of MACE was investigated using restricted cubic spline models

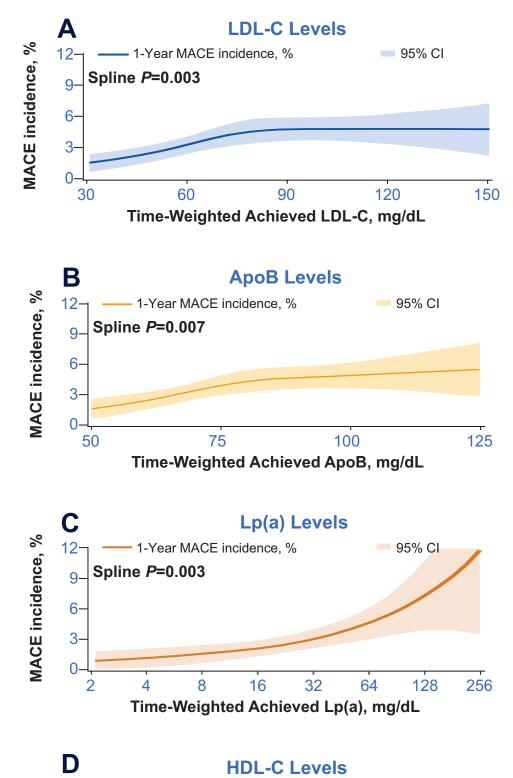
Figure 1. Median percent changes in lipid and lipoprotein levels


Table 1. Baseline clinical characteristics

Parameter	Placebo (N=962)	Obicetrapib (N=1922)
Median age (years)	65.0	66.0
Females (%)	35.9	36.3
White race (%)	78.7	76.0
Body mass index (kg/m²)	28.9	28.7
ASCVD (%)	82.4	82.5
HeFH (%)	27.0	26.9
Diabetes (%)	37.6	34.9
Hypertension (%)	78.4	76.5
Current smoker (%)	20.5	20.9


Table 2. Concomitant medications and median baseline lipids

Parameter	Placebo (N=962)	Obicetrapib (N=1922)
Statins (%)	91.6	90.6
HIS (%)	68.7	69.6
Ezetimibe (%)	29.0	30.2
PCSK9 inhibitor (%)	6.1	4.9
LDL-C (mg/dL)	92.0	93.0
HDL-C (mg/dL)	48.0	48.0
Triglycerides (mg/dL)	127.0	122.0
Non-HDL-C (mg/dL)	116.0	116.0
ApoB (mg/dL)	88.0	88.0
Lp(a) (nmol/L)	40.0	40.5


Figure 2. Incidence of the composite of coronary heart disease death, myocardial infarction, ischemic stroke, or coronary revascularization

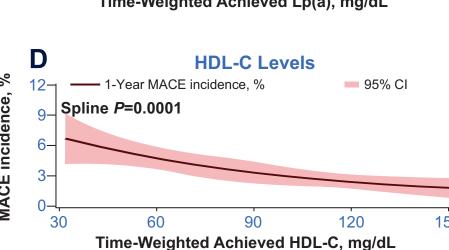


Figure 3. Incidence of the composite of coronary heart disease death, myocardial infarction, or coronary revascularization

Figure 4. Achieved levels of LDL-C, ApoB, Lp(a), and HDL-C and MACE rates

Results

- Baseline and clinical characteristics, including concomitant medications and lipid levels, are shown in **Tables 1** and **2**
- Treatment with obicetrapib produced greater reductions in LDL-C (-37.8% vs -4.6%), ApoB (-21.7% vs -3.6%), and Lp(a) (-32.5% vs 0%) and greater increases in HDL-C (+140.0% vs +1.5%) compared with placebo (**Figure 1**)
- The rate of coronary heart disease death, myocardial infarction, ischemic stroke, or coronary revascularization was lower with obicetrapib (3.9% vs 5.0%; HR: 0.77; 95% CI: 0.54–1.11; P=0.16), with a risk reduction in the second 6 months (HR: 0.60; 95% CI: 0.37–0.99; P=0.04) (Figure 2)
- The rate of coronary heart disease death, myocardial infarction or coronary revascularization was lower with obicetrapib (3.2% vs 4.7%; HR: 0.68; 95% CI: 0.46–1.00; P=0.048), with a risk reduction in the second 6 months (HR: 0.45; 95% CI: 0.26–0.77; P=0.003) (Figure 3)
- CV event rates were directly associated with achieved levels of LDL-C, ApoB, and Lp(a) and inversely associated with HDL-C levels (Figure 4)

Conclusions

- Treatment of high CV risk patients with obicetrapib resulted in a reduction in coronary events, which became evident beyond 6 months of treatment
- Achieved levels of LDL-C, ApoB, Lp(a), and HDL-C were associated with the ongoing risk of CV events
- This highlights the potential for obicetrapib to be a useful adjunctive therapy to lower CV risk
- The ultimate impact of obicetrapib on CV events is being evaluated in the ongoing PREVAIL trial of over 9000 patients 16

Acknowledgements

These data have been previously presented as a Late Breaker oral presentation at the European Society of Cardiology (ESC) 2025 Scientific Sessions, on Monday, September 1, 2025.

1. Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. *J Lipid Res.* 2012;53(9):1755-1766. doi:10.1007/s11883-023-01184-13. Klerkx AHEM, El Harchaoui K, van der Steeg WA, et al. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol beyond raising high-density lipoprotein bevels pathways by which modulation of CETP activity may alter a therogenesis. *A Identity* 17, 2167-364. 5, van der Tuin SJL, Kühnast S, Berbée JFP, et al. Anacetrapib reduces; (V)LDL cholesterol by inhibition of CETP activity may alter a therogenesis. *A Identity* 17, 2167-364. 5, van der Tuin SJL, Kühnast S, Berbée JFP, et al. Anacetrapib reduces; (V)LDL cholesterol by inhibition of CETP activity may alter a therogenesis. *A Identity* 17, 2167-364. 5, van der Tuin SJL, Kühnast S, Berbée JFP, et al. Anacetrapib reduces; (V)LDL cholesterol by inhibition of CETP activity may alter a therogenesis. *A Identity* 17, 2108-364. 5, van der Tuin SJL, Kühnast S, Berbée JFP, et al. Anacetrapib robes of pash and cardiovascular in the subject of the CETP activity may alter a therogenesis. *A Identity* 17, 2108-236. 45, 211-236. 45,